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Does Banach’s open mapping theorem hold true for bilinear mappings?

A natural example of a bilinear continuous surjection:

(f , g) 7→ f · g
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Fremlin’s example, 2004 (
CR[0, 1], ∥ · ∥∞

)
Lack of openness of multiplication at (f , f ), where

f (x) = x − 1

2
(x ∈ [0, 1]).

Why?

Definition

A unital Banach algebra A has topological stable rank 1 (tsr A = 1) when the set of all
invertible elements in A is dense in A.
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Theorem (S.Draga, T.Kania, 2017)

Let A be a unital Banach algebra. If multiplication in A is an open mapping
then tsrA = 1.

f (x) = x − 1
2 , x ∈ [0, 1]

Natalia Maślany Differential embeddings into algebras of topological stable rank 1



Introduction

Introduction

Theorem (S.Draga, T.Kania, 2017)

Let A be a unital Banach algebra. If multiplication in A is an open mapping
then tsrA = 1.

f (x) = x − 1
2 , x ∈ [0, 1]
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Examples

Examples of function algebras with open multiplication:

spaces of complex continuous functions (on at most 1-dim spaces);

spaces of bounded functions;
spaces of functions of bounded p-variation variation (1 ≤ p < ∞).

The first two results: M. Balcerzak, E. Behrends, F. Botelho, A. Komisarski, A. Maliszewski, H. Renaud, F.
Strobin, A. Wachowicz, W. Wilczyński, T. Kania, M.
More recent results: T. Canarias, A. Karlovich, E. Shargorodsky, S. Kowalczyk, M. Turowska.
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How can we unify these theorems?

Wiener’s lemma, 1932

If a non-vanishing function f has an absolutely convergent Fourier series, then 1
f also

does; i.e., f is invertible in Wiener algebra.

Question

When is the algebra closed under inverses?
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Definition

When i : A → B is a unital continuous injective homomorphism of Banach algebras, we
say that A admits norm-controlled inversion in B, if there exists h : (0,∞)2 → (0,∞)
so that for every a ∈ A, which is invertible in B, we have

∥a−1∥A ⩽ h(∥a∥A, ∥i(a−1)∥B).

Convention

We say that a commutative (*-)semi-simple Banach (*-)algebra admits
norm-controlled inversion, if it has this property in C (ΦA), when embedded by the
Gelfand transform.
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inverse-closed ≠⇒ norm-controlled inversion (Nikolski, 1999)

The Wiener (convolution) algebra ℓ1(Z) is a commutative Banach *-algebra without
the norm-controlled inversion in C (T).

Definition

When i : A → B is a unital injective homomorphism of Banach algebras, then A is
a differential subalgebra of B, if there is D > 0 such that for all a, b ∈ A we have

∥ab∥A ⩽ D(∥a∥A∥i(b)∥B + ∥i(a)∥B∥b∥A).

Lemma (K. Gröchenig, A. Klotz, 2013)

Differential *-subalgebras of C*-algebras have norm-controlled inversion.
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inverse-closed ≠⇒ norm-controlled inversion (Nikolski, 1999)

The Wiener (convolution) algebra ℓ1(Z) is a commutative Banach *-algebra without
the norm-controlled inversion in C (T).

Definition

When i : A → B is a unital injective homomorphism of Banach algebras, then A is
a differential subalgebra of B, if there is D > 0 such that for all a, b ∈ A we have

∥ab∥A ⩽ D(∥a∥A∥i(b)∥B + ∥i(a)∥B∥b∥A).
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Main theorem 1

Definition

Let A be a unital Banach *-algebra. For a ∈ A we interpret |a|2 as a∗a. We say that
elements a, b in A are jointly non-degenerate, when |a|2 + |b|2 is invertible.

Theorem 1 (Kania, M., 2023)

Suppose that A is a unital symmetric dual Banach *-algebra that is a dense differential
subalgebra of C (X ). If A shares with X densely many points, then multiplication in A
is open at pairs of elements that are jointly non-degenerate.
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Main theorem 1

The idea of the proof of Th. 1.

Multiplication is open at (F ,G ) iff for any ε > 0 there is some δ > 0 such that

BA(F · G , δ) ⊂ BA(F , ε) · BA(G , ε). (1)

Condition (1) means that for any H ∈ A with ∥H∥ < δ there are f , g ∈ A such that

∥f − F∥A < ε ∥g − G∥A < ε FG + H = fg

How to do it?

F0 := F

Fn+1 := Fn +
HnGn

|Fn|2+|Gn|2

G0 := G

Gn+1 := Gn +
HnFn

|Fn|2+|Gn|2

H0 := H

Hn+1 := − H2
nFnGn

(|Fn|2+|Gn|2)2

Then for all n ∈ N
FnGn + Hn = FG + H
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Example 1

Let A be a (complex) reflexive Banach space with a K -unconditional basis (eγ)γ∈Γ (K ⩾ 1).
Then A is naturally a Banach *- algebra when endowed with multiplication

a · b =
∑
γ∈Γ

aγbγeγ

(
a =

∑
γ∈Γ

aγeγ , b =
∑
γ∈Γ

bγeγ ∈ A

)

and coordinate-wise complex conjugation. Let A# denote the unitisation of A. Then A# has
open multiplication.
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Proof

Since the basis (eγ)γ∈Γ is K -unconditional, we have

∥ab∥A =

∥∥∥∥∑
γ∈Γ

aγbγeγ

∥∥∥∥
A

⩽ K

∥∥∥∥∑
γ∈Γ

aγ · ∥b∥ℓ∞(Γ) · eγ
∥∥∥∥
A

= K∥a∥A∥b∥ℓ∞(Γ) ⩽ K (∥a∥A∥b∥ℓ∞(Γ) + ∥a∥ℓ∞(Γ)∥b∥A).

This means that A# is a differential subalgebra of c(Γ), the unitisation of the algebra
of functions that vanish at infinity on Γ. Since the formal inclusion from A# to c(Γ)
has dense range, the conclusion follows.

Question

What are further examples of (dual) Banach algebras that are approximable by
invertible elements? What about algebras of Lipschitz functions on zero-dimensional
compact spaces?
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Main theorem 2

Definition

A map f : X → Y is uniformly open if

∀ε > 0 ∃δ > 0 ∀x ∈ X B(f (x), δ) ⊆ f [B(x , ε)]

Theorem (A. Komisarski, 2006)

Let X be a compact space. Then multiplication in CR(X ) is

uniformly open, when dimX = 0 (i.e., X is totally disconnected);

weakly open but not open, when dimX = 1;

not weakly open, when dimX > 1.
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Theorem 2 (T. Kania, M., 2023)

Let X be a compact space. Then the following conditions are equivalent for the algebra C (X )
of continuous complex-valued functions on X :

C (X ) has open multiplication,

C (X ) has uniformly open multiplication,

the covering dimension of X is at most 1.

Moreover, the algebras C (X ) have equi-uniformly open multiplications for all compact spaces
of dimension at most 1.
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The idea of the proof of Th. 2.

The proof is split into 3 cases:

a reduction to spaces being topological (planar) realisations of graphs (adapting
unpublished result of Behrends)

the result for all compact metric spaces of dim ⩽ 1

the general one-dim non-metrisable case (dim ⩽ 1 )
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How to do it?(
|F |2 + |G |2

)
(x), x ∈ [0, 1]
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What to do if |F |2 + |G |2 < ε?

We have to find f , g ∈ C ([a, b]) such that

∥f − F∥∞ < ε ∥g − G∥∞ < ε FG + H = fg

Define
Ψ(x) := (FG + H)(x) for x ∈ [a, b].

Note that f (a), f (b) are already known.
Define f in such a way that

|f (x)| ≥
√
|Ψ(x)| for all x ∈ [a, b]

and function g as

g(x) :=

{
Ψ(x)
f (x) if f (x) ̸= 0

0 if f (x) = 0.
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(a) impossible in the real case (b) possible in the complex case
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Case 1: X is a topological realisation of a graph

We consider a partition of X into finitely many intervals,
⋃k

j=1[aj , bj ] and for each
interval we apply an analogous procedure as previously.

Case 2: X is a compact metric space of dim ⩽ 1

Every compact metric space of dim ⩽ 1 is an inverse limit of planar graphs
(Freudenthal, 1937).
We apply the theorem (S. Draga, T. Kania, 2018) which states that if a net of Banach
algebras has equi-uniformly open multiplication, the same holds for its direct limit.

Case 3: X is an arbitrary compact space of dim ⩽ 1

Every compact space of dim ⩽ n is an inverse limit of compact metric spaces of
dim ⩽ n (S. Mardešić, 1960).
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Question (Balcerzak, Behrends, Strobin, 2016)

Is the Cauchy product in ℓ1(N0) open or even uniformly open?

Note: Cauchy product is nothing but convolution w.r.t. the semigroup (N0,+).

Semigroup algebras

Let (S , ·) be a semigroup. Convolution in ℓ1(S) is defined as

(xs)s∈S ∗ (ys)s∈S =
∑
s∈S

(∑
s=r ·t

xryt

)
es

(
(xs)s∈S , (ys)s∈S ∈ ℓ1(S)

)
,

where (es)s∈S is the unit vector basis of ℓ1(S).
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Question

For which semigroups S is convolution in ℓ1(S) (uniformly) open?

Fact

The boundary of the set of invertible elements within a unital Banach Algebra consists
of topological zero divisors, i.e., elements a that satisfy

inf{∥x · a∥+ ∥a · x∥ : ∥x∥ = 1} = 0

Corollary

In ℓ1(N0), element e1 is not a topological zero divisor, so convolution in ℓ1(N0) is not
open.
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Theorem (Draga, Kania, 2018)

Convolution in ℓ1(Z) is not uniformly open.

Theorem 3 (T. Kania, M., 2023)

Let G be an Abelian group of unbounded exponent, i.e., supg∈G ord(g) = ∞. Then
convolution in ℓ1(G ) is not uniformly open.

Question 1

Suppose that G is an abelian group whose elements have uniformly bounded ranks.
Does ℓ1(G ) have open convolution?

Question 2

For which semigroups S is convolution in ℓ1(S) (uniformly) open? Particular examples
welcome.
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Main theorem 3

Theorem (Draga, Kania, 2018)

Convolution in ℓ1(Z) is not uniformly open.

Theorem 3 (T. Kania, M., 2023)

Let G be an Abelian group of unbounded exponent, i.e., supg∈G ord(g) = ∞. Then
convolution in ℓ1(G ) is not uniformly open.

Question 1

Suppose that G is an abelian group whose elements have uniformly bounded ranks.
Does ℓ1(G ) have open convolution?

Question 2

For which semigroups S is convolution in ℓ1(S) (uniformly) open? Particular examples
welcome.
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Thank you for your attention!
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